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Active Shape Model Segmentation With
Optimal Features

Bram van Ginneken*, Alejandro F. Frangi, Joes J. Staal, Bart M. ter Haar Romeny, and Max A. Viergever

Abstract—An active shape model segmentation scheme is pre-
sented that is steered by optimal local features, contrary to normal-
ized first order derivative profiles, as in the original formulation
[Cootes and Taylor, 1995, 1999, and 2001]. A nonlinearNN-clas-
sifier is used, instead of the linear Mahalanobis distance, to find
optimal displacements for landmarks. For each of the landmarks
that describe the shape, at each resolution level taken into account
during the segmentation optimization procedure, a distinct set of
optimal features is determined. The selection of features is auto-
matic, using the training images and sequential feature forward
and backward selection. The new approach is tested on synthetic
data and in four medical segmentation tasks: segmenting the right
and left lung fields in a database of 230 chest radiographs, and seg-
menting the cerebellum and corpus callosum in a database of 90
slices from MRI brain images. In all cases, the new method pro-
duces significantly better results in terms of an overlap error mea-
sure ( 0 001 using a paired T-test) than the original active
shape model scheme.

Index Terms—Active shape models, medical image segmenta-
tion, model-based segmentation.

I. INTRODUCTION

SEGMENTATION is one of the key areas in computer vi-
sion. During the 1970s and 1980s, many researchers ap-

proached the segmentation problem in abottom-upfashion: em-
phasis was on the analysis and design of filters for the detection
of local structures such as edges, ridges, corners and T-junc-
tions. The structure of an image can be described as a collection
of such syntactical elements and their (spatial) relations, and
such descriptions can be used as input for generic segmentation
schemes. Unfortunately, these segmentations are often not very
meaningful. On the other hand,top-downstrategies (also re-
ferred to asmodel-basedoractiveapproaches) for segmentation
were used successfully in highly constrained environments, e.g.,
in industrial inspection tasks. Often these methods are based
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on template matching. Templates incorporate knowledge about
both the shape of the object to be segmented and its gray-level
appearance in the image, and are matched for instance by cor-
relation or with generalized Hough transform techniques. But
template matching, or related techniques, are likely to fail if the
object and/or background exhibit a large variability in shape or
gray-level appearance, as is often the case in real-life images
and medical data.

Active contours or snakes [4], [5] and wave propagation
methods such as level sets [6], have been heralded as a new
paradigms for segmentation. It was their ability to deform freely
instead of rigidly that spurred this enthusiasm. Nevertheless,
such methods have two inherent limitations which make them
unsuited for many medical segmentation tasks. First, little
a priori knowledge about the shape to be segmented can be
incorporated, except for adjusting certain parameters. Second,
the image structure at object boundaries is prescribed by letting
the snakes attract to edges or ridges in the image, or by termi-
nation conditions for propagating waves. In practice, object
boundaries do not necessarily coincide with edges or ridges.

To overcome these limitations, researchers experimented with
hand-crafted parametric models. An illustrative example is the
work of Yuille et al. [7] where a deformable model of an eye is
constructed from circles and parabolic patches and a heuristic
cost function is proposed for the gray-level appearance of the
image inside and on the border of these patches. There are two
problems with parametric models. First of all they arededicated,
that is, limited to a single application. Second, there is no proof
that the shape model and cost function proposed by the designer
of the model are the optimal choice for the given application.

Consequently, there is a need for generic segmentation
schemes that can be trained with examples as to acquire a model
of the shape of the object to be segmented (with its variability)
and the gray-level appearance of the object in the image (with
its variability). Such methods are prototype-based which makes
it easy to adapt them to new applications by replacing the
prototypes; they use statistical techniques to extract the major
variations from the prototypes in a principled manner.

Several of such schemes have been proposed. For an overview
see the book of Blake and Isard [8] and the review by Jainet al.
[9]. In this paper, we focus on active shape models (ASMs) put
forward by Cootes and Taylor [1], [3]. We have implemented
the method based on the description of the ASM segmentation
method detailed in [10]. The shape model in ASMs is given by
the principal components of vectors of landmark points. The
gray-level appearance model is limited to the border of the ob-
ject and consists of the normalized first derivative of profiles
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centered at each landmark that run perpendicular to the object
contour. The cost (or energy) function to be minimized is the
Mahalanobis distance of these first derivative profiles. The fit-
ting procedure is an alternation of landmark displacements and
model fitting in a multiresolution framework.

Several comparable approaches are found in the literature.
Shapes and objects have been modeled by landmarks, finite-el-
ement methods, Fourier descriptors and by expansion in spher-
ical harmonics (especially for surfaces in three dimensions
[11], [12]). Jainet al. [13] have presented a Bayesian frame-
work in which templates are deformed and more probable de-
formations are more likely to occur. They use a coarse-to-fine
search algorithm. Ronfard [14] has used statistics of object
and background appearance in the energy function of a snake.
Brejl and Sonka [15] have described a scheme similar to ASMs
but with a nonlinear shape and appearance model that is op-
timized with an energy function after an exhaustive search to
find a suitable initialization. Pizeret al. [16] describe an object
model that consists of linked primitives which can be fitted
to images using methods similar to ASMs. Cootes and Taylor
have explored active appearance models (AAMs) [2], [17], [18]
as an alternative to ASMs. In AAMs, a combined principal
component analysis of the landmarks and pixel values inside
the object is made which allows one to generate plausible in-
stances of both geometry and texture. The iterative steps in the
optimization of the segmentation are steered by the difference
between the true pixel values and the modeled pixel values
within the object. Sclaroff and co-workers [19], [20] have pro-
posed a comparable method in which the object is modeled as
a finite-element model.

While there are differences, the general layout of these
schemes is similar in that there are: 1) a shape model that
ensures that the segmentation can only produce plausible
shapes; 2) a gray-level appearance model that ensures that the
segmentation places the object at a location where the image
structure around the border or within the object is similar to
what is expected from the training images; and 3) an algorithm
for fitting the model by minimizing some cost function. Usu-
ally, the algorithm is implemented in a multiresolution fashion
to provide long-range capture capabilities.

ASMs have been used for several segmentation tasks in med-
ical images [21]–[27]. Our contribution in this paper consists
of a new type of appearance model for the gray-level varia-
tions around the border of the object. Instead of using the nor-
malized first derivative profile, we consider a general set of
local image structure descriptors,viz. the moments of local his-
tograms extracted from filtered versions of the images using a
filter bank of Gaussian derivatives. Subsequently a statistical
analysis is performed to learn which descriptors are the most in-
formative at each resolution, and at each landmark. This analysis
amounts to feature selection with a-nearest neighbors (NN)
classifier and sequential feature forward and backward selec-
tion. The NN classifier with the selected set of features is used
to compute the displacements of landmarks during optimiza-
tion, instead of the Mahalanobis distance for the normalized first
derivative profile. In this paper, we refer to this new segmenta-
tion method as “ASMs with optimal features,” where the term
optimal must be understood as described above.

TABLE I
PARAMETERS FORACTIVE SHAPE MODELS (ORIGINAL SCHEME AND NEW

METHOD WITH OPTIMAL FEATURES). VALUES USED IN THE EXPERIMENTS

ARE GIVEN BETWEEN PARENTHESES

This paper is organized as follows. In Section II, there is a
step-by-step description of the original ASM scheme. In Sec-
tion III, some observations regarding ASMs are made and pos-
sible modifications to the method are discussed. In Section IV,
the new method is explained. In Section V, the experiments on
synthetic images, chest radiographs, and brain MR data with
both the original ASM scheme and the new method with op-
timal features are described and the results are presented in
Section VI. Discussion and conclusions are given in the Sec-
tion VII.

II. A CTIVE SHAPE MODELS

This section briefly reviews the ASM segmentation scheme.
We follow the description and notation of [2]. The parameters of
the scheme are listed in Table I. In principle, the scheme can be
used in D, but in this paper we give a two-dimensional (2-D)
formulation.
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A. Shape Model

An object is described by points, referred to as landmark
points. The landmark points are (manually) determined in a
set of training images. From these collections of landmark
points, a point distribution model [28] is constructed as follows.
The landmark points are stacked in shape
vectors

(1)

Principal component analysis (PCA) is applied to the shape
vectors by computing the mean shape

(2)

the covariance

(3)

and the eigensystem of the covariance matrix. The eigenvectors
corresponding to the largest eigenvalues are retained in a
matrix . A shape can now be approximated
by

(4)

where is a vector of elements containing the model param-
eters, computed by

(5)

When fitting the model to a set of points, the values ofare
constrained to lie within the range , where usually
has a value between two and three.

The number of eigenvalues to retain is chosen so as to
explain a certain proportion of the variance in the training
shapes, usually ranging from 90% to 99.5%. The desired
number of modes is given by the smallestfor which

(6)

Before PCA is applied to the shapes, the shapes can be aligned
by translating, rotating and scaling them so as to minimize the
sum of squared distances between the landmark points. An iter-
ative scheme known as Procrustes analysis [29] is used to align
the shapes. This transformation and its inverse are also applied
before and after the projection of the shape model in (5). This
alignment procedure makes the shape model independent of the
size, position, and orientation of the objects. Alignment can also
help to better fulfill the requirement that the family of point dis-
tributions is Gaussian, which is an underlying assumption of the
PCA model. To this end, a projection into tangent space of each
shape may be useful; see [2] for details.

However, the alignment can also be omitted. In that case, the
result is a shape model that can generate only shapes with a
size, position, and orientation that is consistent with the supplied
examples. If, for a certain application, the objects occur only

within a specific range of sizes, positions and orientations, such
a model might lead to higher segmentation performance. In an
unaligned shape model, the first few modes of variation are usu-
ally associated with variations in size and position and the vari-
ation seen in the first few modes had the shape model been con-
structed from aligned shapes, is usually shifted toward modes
with lower eigenvalues. Therefore, the parametershould be
larger than in the case of aligned shapes in which no variation
is present with respect to size and position. In our experience,
building an unaligned shape model can improve segmentation
performance provided that enough training data is available.

B. Gray-Level Appearance Model

The gray-level appearance model that describes the typical
image structure around each landmark is obtained from pixel
profiles, sampled (using linear interpolation) around each land-
mark, perpendicular to the contour.

Note that this requires a notion of connectivity between the
landmark points from which the perpendicular direction can be
computed. The direction perpendicular to a landmark
is computed by rotating the vector that runs from
to over 90 . In the applications presented in this
paper, all objects are closed contours, so for the first landmark,
the last landmark and the second landmark are the points from
which a perpendicular direction is computed; for the last land-
mark, the second to last landmark and the first landmark are
used.

On either side pixels are sampled using a fixed step size,
which gives profiles of length . Cootes and Taylor [2]
propose to use the normalized first derivatives of these profiles
to build the gray-level appearance model. The derivatives are
computed using finite differences between the th and
the th point. The normalization is such that the sum of
absolute values of the elements in the derivative profile is 1.

Denoting these normalized derivative profiles as ,
the mean profile and the covariance matrix are computed
for each landmark. This allows for the computation of the Ma-
halanobis distance [30] between a new profileand the profile
model

(7)

Minimizing is equivalent to maximizing the probability
that originates from a multidimensional Gaussian distribu-
tion.

C. Multiresolution Framework

These profile models, given byand , are constructed for
multiple resolutions. The number of resolutions is denoted by

. The finest resolution uses the original image and a step
size of one pixel when sampling the profiles. The next resolution
is the image observed at scale and a step size of two
pixels. Subsequent levels are constructed by doubling the image
scale and the step size.1

The doubling of the step size means that landmarks are dis-
placed over larger distances at coarser resolutions. The blurring
causes small structures to disappear. The result is that the fitting

1Note that we do not subsample the images, as proposed by Cootes and Taylor.
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at coarse resolution allows the model to find a good approxi-
mate location based on global images structures, while the later
stages at fine resolutions allow for refinement of the segmenta-
tion result.

D. Optimization Algorithm

Shapes are fitted in an iterative manner, starting from the
mean shape. Each landmark is moved along the direction per-
pendicular to the contour to positions on either side, evalu-
ating a total of positions. The step size is, again,
pixels for the th resolution level. The landmark is put at the
position with the lowest Mahalanobis distance. After moving
all landmarks, the shape model is fitted to the displaced points,
yielding an updated segmentation. This is repeated times
at each resolution, in a coarse-to-fine fashion.

There is no guarantee that the procedure will converge. It is
our experience, however, that in practice the scheme almost al-
ways converges. The gray-level model fit improves steadily and
reaches a constant level within a few iterations at each resolu-
tion level. Therefore, we, conservatively, take a large value (10)
for .2

III. I MPROVING ASMS

There are several ways to modify, refine and improve ASMs.
In this section, we mention some possibilities.

Bounds for the Shape Model. The shape model is fitted by
projecting a shape in the -dimensional space (the number of
landmarks, the factor two is because we consider 2-D images)
upon the subspace spanned by thelargest eigenvectors and by
truncating the model parametersso that the point is inside the
box bounded by . Thus there is no smooth transition;
all shapes in the box are allowed, outside the box no shape is al-
lowed. Clearly this can be refined in many ways, using a penalty
term or an ellipsoid instead of a box, and so on [2], [16].

Nonlinear Shape Models. The shape model uses PCA
and, therefore, assumes that the distribution of shapesin the

-dimensional space is normal. If this is not true, nonlinear
models, such as mixture models, could be more suitable (see
for example [31]).

Projecting the Shape Model. By projecting a shape
according to (5), i.e., fitting the shape model, the resulting
model parameters minimize the sum of squared distances
between true positions and modeled positions. In practice, it
can be desirable to minimize only the distance between true
and model positions in the direction perpendicular to the object
contour because deviation along the contour does not change
whether pixels are inside or outside the object. In [32], it is
demonstrated how to perform this projection on the contour.

Landmark Displacements. After the Mahalanobis distance
at each new possible position has been computed, Behielset al.
[25] propose to use dynamic programming to find new positions
for the landmarks, instead of moving each point to the position
with the lowest distance. This avoids the possibility that neigh-
boring landmarks jump to new positions in different directions

2We always performN iterations, contrary to Cootes and Taylor who
move to a finer resolution if a convergence criterion is reached before the
N th iteration.

and thus leads to a “smoother” set of displacements. This can
lead to quicker convergence [25].

Confidence in Landmark Displacements. If information is
available about the confidence of the proposed landmark dis-
placement, weighted fitting of the shape model can be used, as
explained in [21].

Initialization. Because of the multiresolution implementa-
tion, the initial position of the object (the mean shape, i.e., the
mean location of each landmark) does not have to be very pre-
cise, as long as the distance between true and initial landmark
positions is well within pixels. But if the object
can be located anywhere within the input image, an (exhaustive)
search to find a suitable initialization, e.g., as described in [15],
can be necessary.

Optimization Algorithm. Standard nonlinear optimization
algorithms, such as hill climbing, Levenberg–Marquardt, or ge-
netic algorithms can be used to find the optimal model param-
eters instead of using the algorithm of alternating displace-
ment of landmarks and model fitting. A minimization criterion
could be the sum of the Mahalanobis distances, possibly com-
plemented by a regularization term constructed from the shape
model parameters. Note that a multiresolution approach can still
be used with standard nonlinear optimization methods. Alterna-
tively, a snake algorithm can be used in which the shape model
provides an internal energy term and the gray-level appearance
model fit is used as external energy term.

This list is not complete, but it is beyond the scope of this ar-
ticle to present a complete discussion of the strengths and weak-
nesses of the ASM segmentation method. The issues described
above are not considered in this work. Instead, we focus on the
following points:

Normalized First Derivative Profiles. The original version
of the gray-level appearance model is always based on normal-
ized first derivative profiles. There is noa priori reason why this
should be an optimal choice. In this paper, we propose an alter-
native.

Mahalanobis Distance. The Mahalanobis distance in (7) as-
sumes a normal distribution of profiles. In practice, the distribu-
tions of profiles will often be nonnormal, for example in cases
where the background of the object may be one of several pos-
sible choices. The ASM scheme proposed here uses a nonlinear
classifier in the gray-level appearance model and can, therefore,
deal with nonnormal distributions.

IV. ASMS WITH OPTIMAL FEATURES

In this section, a new gray-level appearance model is de-
scribed that is an alternative to the construction of normalized
first derivative profiles and the Mahalanobis distance cost func-
tion of the original ASMs.

The aim is to be able to move the landmark points to better lo-
cations during optimization, along a profile perpendicular to the
object contour. The best location is the one for which everything
on one side of the profile is outside the object, and everything
on the other side is inside of it.3 Therefore, the probability that

3This assumes that the thickness of the object, in the direction perpendicular
to a landmark, is larger than half the length of the profile. We will return to this
point later.
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a location is inside/outside the object is estimated, for the area
around each landmark separately. We base this classification on
optimal local image features obtained by feature selection and
a nonlinear NN-classifier, instead of using the fixed choice of
the normalized first derivative profiles and the Mahalanobis dis-
tance.

A. Image Features

We are looking for general image structure descriptors. A
Taylor expansion approximates a functionaround a point of
interest by a polynomial of (some) order . The coefficients
in front of each term are given by the derivatives at

(8)

Derivatives of images are computed by convolution with
derivatives of Gaussians at a particular scale. This motivates
the use of a filter bank of multiscale Gaussian derivatives to
describe local image structure. The Taylor expansion of images
is known as the local jet, or multiscale local jet in the case of
the Taylor expansion of the scale-space of the image [33], [34].

Given a set of filtered images, we will extract features for each
location by taking the first few moments of the local distribu-
tion of image intensities (the histogram) around each location.
The most suitable choice for a window function to compute this
histogram, is a Gaussian, since every other choice induces spu-
rious resolution [35]. The size of this window function is char-
acterized by a second scale parameter. The construction of
local histograms, extracted from a Gaussian aperture function,
is called alocally orderless imageand discussed in [36]. The
idea of using moments of histograms of responses of an image
to a bank of filters is a standard technique in texture analysis;
see, e.g., [37].

Notice that there are quite some parameters to vary: the order
of the Taylor expansion (i.e., the number of filters in the filter
bank), the number of scalesto consider, the number of scales

to use for the local window, and the number of momentsto
extract from the local histograms. It remains an open question
which combinations are optimal for a given application and even
a given location in the images. Our strategy is to compute an
extensive set of features and use feature selection techniques in
the subsequent classification stage to determine the optimal fea-
tures. However, we must have , otherwise the histogram
will be computed over a homogeneous region and will, there-
fore, be uninteresting.

In this paper, we use only first and second moments (
), all derivatives up to second-order (, , , , ,
), five inner scales ( pixels), and a fixed

relation between the inner scaleand the histogram extentof
. For the first moments this yields an effective scale of

1.12, 2.23, 4.47, 8.94, and 17.89 pixels, respectively (because
the image is first blurred with a kernel of scaleand subse-
quently with a kernel ). The total number of feature
images is 2 6 5 60.

Obviously the method can be extended by using more scales
and higher-order derivatives, higher-order moments, or by re-
leasing the fixed relation betweenand .

B. Training and Classification

The next step is to specify how to construct a training set from
the training images, which classifier to use, and how to perform
feature selection.

Consider again the optimization procedure. At each iteration,
each landmark is positioned at locations along a pro-
file perpendicular to the current object location. Obviously the
image structure is different for each landmark, but the positions
that are evaluated are also different for each resolution. There-
fore, we will select a distinct optimal set of features for each
landmarkand for each resolution, amounting to feature
sets. Note that in the original ASMs the same strategy is fol-
lowed: mean profiles and the covariance matricesas
they appear in (7) are computed: for each landmark, at each res-
olution.

From each training image and for each landmark a square grid
of points is defined with an odd integer and
the landmark point at the center of the grid. The spacing is
pixels for the th resolution level.

is fixed to 5, which means that for each landmark and
for each resolution level, a feature vector with 60 elements is
sampled at 25 points. The output of each feature vector is either
inside (1) or outside (0) the object. The landmark points them-
selves are considered to be inside the objects (this is an arbitrary
choice). The set of training images is divided in two equal parts.
This leads to two sets of samples, a training and a validation set.
A NN classifier [38] with weighted voting is used.
was used and the weight of each vote is , where is
the Euclidean distance to each neighbor in the feature space.

Sequential feature forward selection (also known as
Whitney’s method [39]–[41]) is used to find a feature set
of at most features. This set is subsequently trimmed
by sequential feature backward selection, that is, features
are removed if that improves performance. This procedure
of forward selection followed by backward selection is as
or almost as effective as optimal “floating” feature selection
schemes [40], [41]. The resulting set is the “optimal” set of
features that will be used during segmentation. After feature
selection, the samples from the training and the validation set
are merged and a list of the selected features for each landmark
and each resolution is stored.

When the model is fitted to an input image, the scheme starts
by computing the 60 feature images. Instead of sampling the
normalized derivative profiles, the optimal feature set at each
position along the profile is fed into aNN classifier to de-
termine the probability that this pixel is inside the object. The
objective function to be minimized is the sum of abso-
lute differences between the expected probability (0 or one for
points outside or inside the object, respectively) and the pre-
dicted probability, for each point along the profile

(9)

where the index along the profile, that is oriented from the
outside to the inside of the object, runs from , to . This
metric replaces the Mahalanobis distance from (7).
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C. Summary of Training and Segmentation Algorithm

Training the shape model.

1) Construct shape model [(2) and (3)].
Training the gray-level appearance model.

1) Compute the 60 feature images for each training image.
2) For each landmark, at each resolution, construct a set

of training samples with as input the 60 features and as
output zero or one depending on whether the sample is in
or outside the object. Samples are taken from an
grid around the landmark in each training image (so each
training set contains samples).

3) For each training set, construct aNN classifier with se-
lected optimal features. So the final result of the training
phase is a set of classifiers.

Segmentation.

1) Initialize with the mean shape.
2) Start the coarsest resolution level.
3) For each landmark, put it at new locations, eval-

uate (9) with the NN classifier, move landmark to best
new position.

4) Fit the shape model to displaced landmarks; cf. (5).
5) Iterate steps 3 and 4 times.
6) If the current resolution is not yet the finest resolution,

move to a finer resolution and go to Step 3.

D. Computational Considerations

One of the advantages of the original ASM scheme compared
to other segmentation methods is its speed. The new method
is considerably more computationally expensive. However, all
the feature selection is to be done off-line (during training).
An optimized NN classifier [42] was used, available on the
web at http://www.cs.umd.edu/~mount/ANN. We provide some
benchmark figures, obtained with a 600-MHz Pentium III PC, a
256 256 image, and the same parameter settings that are used
in all experiments in this study. The feature images have to be
computed on-line (during segmentation), which required 8.0 s.
For the original ASM method, a number of blurred images have
to be computed, which required 0.35 s.

During optimization feature vectors must be classified by
NN classifiers and this requires more time than computing

Mahalanobis distances. The total time for segmentation was
0.17 s for the original ASM scheme and 4.1 s for the method
with optimal features.

Using a smaller feature set would reduce the computational
cost of the method (almost linearly). An alternative would be to
select a subset of the 60 features for all operations (each land-
mark, each resolution) so that it is no longer necessary to com-
pute all 60 images for each input image. However, this speed
improvement would probably come at the price of a decrease in
performance.

V. EXPERIMENTS

A. Materials

Five different segmentation experiments have been per-
formed with three types of data. The images and objects used in

TABLE II
DESCRIPTION OF THEOBJECTS ANDIMAGES USED IN THE FIVE

SEGMENTATION EXPERIMENTS

(a) (b) (c)

Fig. 1. (a) A generic house image. The image has a resolution of 200� 200
pixels. New house images are randomly generated by adding a displacement
(dx; dy) to each corner point wheredx anddy are randomly selected from
the interval (�20,+20) pixels, and subsequently translating the distorted house
by (dx; dy) wheredx anddy are randomly selected from the interval (�35,
+35) pixels. (b) An example of a generated house image. (c) An example of a
generated textured house image. Random parts from two different textures, both
taken from the Brodatz set and histogram equalized, are used to fill the inside
and outside of the house.

the experiments, that are labeled I to V, are briefly described in
Table II. For all experiments, the images are randomly divided
into training and test sets of equal size.

The data for Experiment I consisted of simulated images with
an object that has the shape of a house from which the five corner
points were perturbed. Details about the construction of the im-
ages are given in Fig. 1.

The image data for Experiments II and III are 230 standard PA
chest radiographs selected from a tuberculosis screening pro-
gram. The data contained both normal and abnormal cases of
patients of 16 years and older. The images were taken with a
mobile Electrodelca (Oldelft BV, Delft, The Netherlands). The
tube voltage was 117 kV and the images were printed on 10
10 cm film and digitized with a Lumisys 100 scanner (Lumisys,
Inc., Sunnyvale, CA) and subsampled to 256256 pixels. Two
observers independently segmented the right and left lung field.

For Experiments IV and V, a collection of 90 MRI slices of
the brain was used, in which the corpus callosum and the cere-
bellum were segmented. Two to three slices were taken, on av-
erage, from the same patient. On average The images and seg-
mentations were made available by the University of Iowa Hos-
pitals and Clinics and were also used by Brejl and Sonka in
[15]. The resolution is 320 256 pixels, 0.7 mm/pixel, ob-
tained by interpolating the original volumetric data acquired
with 1.5-mm-thick coronal slices.

The objects in the images were annotated by a number offixed
landmarks and a closed contour between those fixed points from
which a number of equidistant landmark points were sampled.
The number of fixed and total landmarks are given in Table II.
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B. Methods

For each parameter of ASMs, a fixed setting was selected that
yielded good performance, after initial pilot experiments. For the
house and lung shapes, no shape alignment was performed and
a shape model was constructed with . For these ex-
periments, omitting alignment led to better segmentation perfor-
mance. The number of modes in the shape models was six for the
house images and ten and 11 for the right and left lung, respec-
tively. For the brain structures, shape alignment was used (in this
case better segmentation performance was obtained with the use
of alignment) and a shape model explaining 98% of the variance
( ) was constructed. The number of modes in the shape
model was six for the cerebellum and 20 for the corpus callosum.

The other settings were four levels of resolution ( ),
ten iterations/level ( ), profiles of length five ( )
and evaluation of nine positions/iteration ( ). When fitting
the shape model to the displaced landmarks, each mode was
constrained within two times the standard deviation ( ).
For the extended ASMs, at most ten features were selected for
each landmark and each resolution ( ). Training data
were selected from 5 5 neighborhoods around each landmark
( ). In the NN classifier, five neighbors were used
( ). All parameter settings are listed in Table I.

To compare different segmentations, the following “overlap”
measure was used

(10)

where TP stands for true positive (the area correctly classified
as object), FP for false positive (area incorrectly classified as
object), and FN for false negative (area incorrectly classified as
background). for a perfect result and if there is no
overlap at all between the detected and true object. This measure
more closely reflects the idea of a good segmentation than the
average distance between the true and detected landmark loca-
tion, because the latter is not sensitive to shifts of the landmarks
along the contour.

In all experiments, the performance when fitting the shape
directly to the true landmarks [cf. (5)] was also computed. For
Experiments II and III manual segmentations by a second ob-
server were available. Therefore,for the second observer can
be compared with for the automatic methods.

VI. RESULTS

The results of all experiments are given in Table III. The re-
sult of directly fitting the shape model to the landmark points
cf. (5) is included because it indicates an upper bound for both
the original method and the method with optimal features. Note
that fitting the shape model minimizes the distance between the
predicted landmark position and the true landmark position; it
does not necessarily optimize. Therefore, it is possible that an
ASM scheme produces a set of model parametersfor which

is higher than for fitting the shape model directly. This oc-
curred in a few cases. Another practical measure of the optimal
performance any automatic segmentation method that is trained
with examples can achieve, is the variation between observers.
This measure is given for Experiments II and III, where the me-

TABLE III
EXPERIMENTAL RESULTS OFORIGINAL ASM, ASM WITH OPTIMAL

FEATURES, DIRECTLY FITTING THE SHAPE MODEL AND A COMPARISON

WITH A SECOND OBSERVER(EXP. II AND III)

dian of the ASM method with optimal features is close to
median of a second human observer.

Experiment I was included to demonstrate the limitations of
the original ASM method. In the case of texture boundaries, a
pixel profile or a normalized first derivative of such a profile,
will not produce a clear distinction between the inside and out-
side of the object. The optimal features are derived from local
image structure measures and usually some of these will be dif-
ferent for two different textures. Consequently the method based
on optimal features can deal with many different types of texture
boundaries. For the other experiments the differences between
the methods are smaller, but in all cases ASMs with optimal
features produced significantly highervalues than the orig-
inal scheme ( in a paired t-Test for all experiments).
This is also clear from Fig. 2 which shows scatter plots for each
segmentation task. In these plots, points which are above the di-
agonal line indicate images for which the segmentation with op-
timal features is better than the result of the original scheme. It is
apparent that a substantial improvement is achieved for Exper-
iment I and evident improvements for Experiments II, IV, and
V. Only for Experiment III, the left lung fields, there is a con-
siderable number of cases where the original method has better
performance.

Example results are shown in Figs. 3–7. There were no signif-
icant differences between the results for normal and abnormal
chest radiographs.
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(a) (b)

(c) (d)

(e)

Fig. 2. Scatter plots of each segmentation experiment. The overlap measure

 for the original ASM scheme is plotted against
 for the ASM method
with optimal features for each segmented image. (a) Houses,p = 1:6410 ;
(b) right lung fields,p = 7:9210 ; (c) left lung fields,p = 8:6310 ;
(d) corpus callosum,6:4810 ; and (e) cerebellum,p = 1:7910 .

VII. D ISCUSSION

In this section, we discuss some properties and possible re-
finements of the proposed ASM method.

The largest improvement in performance is obtained for sim-
ulated data in which the textural appearance of the image in-
side and outside the object is different. This indicates that the
proposed method may be especially useful to segment textured
objects from textured backgrounds. An example could be seg-
mentation in ultrasound images.

An important aspect is that an optimal set of features is se-
lected for each landmark and each resolution separately. Alter-
natively, a single set of optimal features could be used, which
would be equivalent to designing a pixel classifier that assigns
each image location to one of two classes: outside or inside the
object of interest. The segmentation method could be run on
these “potential images” instead of on the real data. We have

(a) (b) (c)

Fig. 3. Example result for the segmentation of the generated textured images
with a house shape. Segmentations are given by the thick white line. (a) True
shape. (b) ASMs (
 = 0:219). (c) Optimal ASMs (
 = 0:861).

conducted pilot experiments which indicated that the perfor-
mance of such an approach is worse than that of the method
presented here, ASMs with optimal features. The set of selected
features varies considerably/landmark and resolution and is dif-
ferent for different applications. Had we used a standard feed-
forward neural network to for the classification of locations in
the image as inside or outside the object, instead of aNN-clas-
sifier and feature selection, the particular combination of input
features constructed by the network could be considered as the
optimal filter for that particular landmark and resolution. In our
case, the selected features cannot directly be interpreted as a
single optimal filter, but the idea is similar. Note that the method
does not require the use of aNN classifier; any classifier could
be used instead. Similarly, the method does not rely on the spe-
cific set of features used here. More feature images can be used,
by using higher moments, more (higher-order) derivatives and
by relaxing the fixed relation betweenand .

The results of the improved ASM method approaches the me-
dian result of a second observer, which was available for Exper-
iments II and III. However, the second observer performed still
significantly better.

Both the original and improved ASM method contain a range
of free parameters (Table I). Although we have found that seg-
mentation results are not very dependent on the choice for these
parameters, as long as they are within a sensible range, it could
be desirable to use a straightforward iterative procedure to se-
lect optimal settings using the training set.

A more elaborate criterion for evaluating new landmark po-
sitions could be as follows. Currently landmarks are moved to
those locations where the profile values are closest to zero for
points outside the object and closest to one for points inside the
object. In practice, the optimal profiles may be different. Espe-
cially if the object is very thin and the fitting occurs at a coarse
resolution level, the innermost points of the profile may cross
the border on the other side of the object! The actual profiles
can be extracted from the training set and used to construct a
model based on their mean and covariance matrices, that can
steer the landmark displacement, in the same way as the original
ASM scheme. Another enhancement would be to take into ac-
count the structure along the profile, instead of using local pixel
classification for each position along the profile independently.
This may improve performance. Consider a set of images, half
show a black object on a white background, and the other half a
white object on a black background. With local image features,
it is impossible to classify locations as inside or outside the ob-
ject. But a set of features measured along the profile can easily
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(a) (b) (c) (d)

Fig. 4. Example result for the right lung field segmentation. Segmentations are given by the thick white line. (a) True shape. (b) ASMs,
 = 0:884. (c) ASMs,

 = 0:945. (d) ASMs,
 = 0:952.

(a) (b) (c) (d)

Fig. 5. Example result for the left lung field segmentation. Segmentations are given by the thick white line. (a) True shape. (b) ASMs,
 = 0:873. (c) ASMs,

 = 0:935. (d) ASMs,
 = 0:961.

(a) (b) (c)

Fig. 6. Example result of segmenting the corpus callosum. Segmentations are
given by the thick white line. (a) True shape. (b) ASMs,
 = 0:474. (c) ASMs,

 = 0:828.

(a) (b) (c)

Fig. 7. Example result of segmenting the cerebellum. Segmentations are given
by the thick white line. (a) True shape. (b) ASMs,
 = 0:679. (c) ASMs,

 = 0:909.

distinguish correct profiles, with an intensity jump at exactly
the landmark location, from incorrect profiles, with no intensity
jump or an intensity jump at a different location.

The computational complexity of the improved ASM method
is roughly 20-fold that of the original scheme. The computa-
tional burden can be reduced if the feature images are computed
only at those points where their value is required during seg-

mentation. Using a faster classifier will also reduce computa-
tion time. Nevertheless, the algorithm still requires only a few
seconds on standard PC hardware.

We conclude by stating that active shape models provide a
fast, effective, automatic, model-based method for segmentation
problems in medical imaging. The new ASM method introduced
in this paper significantly improves the original method through
the use of an adaptive gray-level appearance model based on
local image features.
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